Space

Astronomers deliver first photo of black hole

Astronomers on Wednesday unveiled the first photo of a black hole, one of the star-devouring monsters scattered throughout the Universe and obscured by impenetrable shields of gravity.

“The history of science will be divided into the time before the image, and the time after the image,” said Michael Kramer, director at the Max Planck Institute for Radio Astronomy.

Carlos Moedas, European Commissioner for Research, Science and Innovation called the feat a “huge breakthrough for humanity.”

The supermassive black hole immortalised by a far-flung network of radio telescopes is 50 million lightyears away at the centre of a galaxy known as M87.

“It’s a distance that we could have barely imagined,” Frederic Gueth, an astronomer at France’s National Centre for Scientific Research (CNRS) and co-author of studies detailing the findings, told AFP.

Most speculation had centred on the other candidate targeted by the Event Horizon Telescope: Sagittarius A*, a closer but smaller black hole at the centre of our own galaxy, the Milky Way.

“The history of science will be divided into the time before the image, and the time after the image,” said Michael Kramer, director at the Max Planck Institute for Radio Astronomy.
Carlos Moedas, European Commissioner for Research, Science and Innovation called the feat a “huge breakthrough for humanity.”
The supermassive black hole immortalised by a far-flung network of radio telescopes is 50 million lightyears away at the centre of a galaxy known as M87.
“It’s a distance that we could have barely imagined,” Frederic Gueth, an astronomer at France’s National Centre for Scientific Research (CNRS) and co-author of studies detailing the findings, told AFP.
Most speculation had centred on the other candidate targeted by the Event Horizon Telescope: Sagittarius A*, a closer but smaller black hole at the centre of our own galaxy, the Milky Way.

Locking down an image of M87’s supermassive black hole at such distance is comparable to photographing a pebble on the Moon, the scientists said.
It was also very much a team effort.
“Instead of constructing a giant telescope that would collapse under its own weight, we combined many observatories,” Michael Bremer, an astronomer at the Institute for Millimetric Radio Astronomy (IRAM) in Grenoble, told AFP.

Earth in a thimble

Over several days in April 2017, eight radio telescopes in Hawaii, Arizona, Spain, Mexico, Chile, and the South Pole zeroed in on Sag A* and M87.
Knitted together, they formed a virtual observatory some 12,000 kilometres across—roughly the diameter of Earth.
The more mass, the bigger the hole. At the same scale of compression, Earth would fit inside a thimble.

A successful outcome depended in part on the vagaries of weather during the April 2017 observation period.
“For everything to work, we needed to have clear visibility at every (telescope) location worldwide”, said IRAM scientist Pablo Torne, recalling collective tension, fatigue and, finally, relief.

‘Hell of a Christmas present’

Torne was at the controls of the Pico Veleta telescope in Spain’s Sierra Madre mountains.
After that, is was eight months of nail-biting while scientists at MIT Haystack Observatory in Massachusetts and the Max Planck Institute for Radio Astronomy in Bonn crunched the data.

Leave a Reply